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Abstract: Ramanujan’s lost notebook contains many results on mock theta functions. In particular, the lost 

notebook contains eight identities for tenth order mock theta functions. Previously many authors proved the first 

six of Ramanujan’s tenth order mock theta function identities. It is the purpose of this paper to prove the seventh 

and eighth identities of Ramanujan’s tenth order mock theta function identities which are expressed by mock theta 

functions and also a definite integral. The properties of modular forms are used for the proofs of theta function 

identities and L. J. Mordell’s transformation formula for the definite integral. 

Keywords: Mock Theta Functions from Ramanujan’s Lost Notebook. 

Let us start from the famous quote on Ramanujan by one of the prominent mathematician: 

I still say to myself when I am depressed and find myself forced to listen to pompous and tiresome people, ’Well I have 

done one thing you could never have done, and that is to collaborated with Little wood and Ramanujan on something 

like equal terms’. 

                                                                                                                                                                              G.H.HARDY 

1.      INTRODUCTION 

In S. Ramanujan’s last letter to G. H. Hardy [BR], Ramanujan described a mock theta function, which is a function f(q) 

defined by a q-series which converges for | q |< 1 and which satisfies the following two conditions: 

(1) For every root of unity ζ, there is a theta function θζ (q) such that the difference f(q) − θζ (q) is bounded as q → ζ 

radially. 

(2) There is no single theta function which works for all ζ: i.e., for every theta function θ(q) there is some root of unity ζ 

for which f(q) − θ(q) is unbounded as q → ζ radially.  

He then provided a long list of ‘third order,’ ‘fifth order,’ and ‘seventh order’ mock theta functions together with identities 

satisfied by them. Further identities can be found in Ramanujan’s lost notebook [RA]. In his lost notebook [RA, p. 9], 

 Ramanujan also gave a list of eight identities involving the following four Ramanujan’s tenth order mock theta functions: 
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Where (a; q)n := 
1

0

(1 )
n

m

m

aq




  

The seventh and eighth identities of Ramanujan’s identities each expresses a combination of φ(q), ψ(q), and a definite 

integral. The main purpose of this paper is to prove Ramanujan’s seventh and eighth identities. The first six of 

Ramanujan’s identities were proved by the author [C1], [C2], [C3]. The seventh and eighth identities are 
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G. N. Watson [WG] also provided several third order mock theta function identities which include the definite integral. 

Those identities are derived from the generalized Lambert series for the third order mock theta functions by using 

Cauchy’s theorem.  

We first need to define a few notations. Throughout the paper, summation indices run through all integers, or through all 

integers satisfying the conditions listed under the summation sign. 

Notation.. 

For a complex number q with | q |< 1 and | bc |< 1, set 

                                       
0

( ; ) : (1 )m

m

a q aq




    

And                                 

(1.3)                               
( 1) 2 ( 1)/2( , ) : j j j j

j

f b c b c   

We can easily verify the following identity 

(1.4)             
2 2 2 2 2 2 2( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )a q a q a q q a q a q a q q         

Note that  

(1.5)                        
( 1) 2 ( 1)/2 ( ; ) ( ; ) ( ; )j j j j

j

b c b bc c bc bc bc 

      

Is called the Jacobi triple product identity and 

(1.6)                  
2( , ) ( ; )f q q q q    

is called Euler’s pentagonal number theorem [B1, p. 36]. In [C1], the author derived the following results:  

(1.7)          

              
1 10 1 10 2 5

1 1( ) ( , ) ( , ) ( ) ( , ) 2 ( , , )q f z z q L q z a q f z z q qA zq q q            
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And 

(1.8) 

           
1 10 1 10 4 2 5

2 2( ) ( , ) ( , ) ( ) ( , ) 2 ( , , )q f z z q L q z a q f z z q qA zq q q            
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(1.9) 
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     3 7 4 6 2 5 5 10 10 3, ) ( , ) ( , ) / ( , ) ,q f q q f q q q q       

These two identities (1.7) and (1.8) show that two tenth order mock theta functions can be expressed in terms of 

generalized Lambert series and theta functions. D. Hickerson [H1], [H2] derived similar results for fifth and seventh order 

mock theta functions, and G. E. Andrews and Hickerson [AH] derived similar results for sixth order mock theta functions. 
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The author [C2] also derived similar results for the other tenth order mock theta funcions X(q) and χ(q). We will prove 

(1.1) and (1.2) with (1.7), (1.8), and the transformation formula for the definite integral [ML] which is provided by L. J. 

Mordell. In [ML, p. 333], Mordell provided the following formula related to the definite integral: 

         (1.14) 
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And 

            (1.16)                
2 1/4 (2 1)

11( , ) ( 1)m m m m ix

m

i x q e       . 

 In Section 2, we prove nine theta function identities. Six of them are proved by using properties of modular forms. In 

Section 3, using (1.14), we derive an identity which shows that the definite integral in (1.1) can be expressed by F(x, ω) 

and 11  (x, ω). Then, applying the generalized Lambert series (1.9) and (1.10), and the two identities (1.7) and (1.8) to the 

identity, we find that the definite integral in (1.1) is represented by φ(q), ψ(q), and theta functions. Simplifying the sum of 

theta functions by using the identities in Section 2, we complete the proof of (1.1). In Section 4, we will also prove 

Ramanujan’s eighth identity by methods similar to those in Section 3. 

2.     PROOFS OF THETA FUNCTION IDENTITIES 

In this section, we will prove nine theta function identities. To prove first three identities, we need the next three 

theorems.  

Theorem 2.1. For 0 1q  ,    0, 0,x y   

                         
1 1 1 2 1 1( , ) ( , ) ( ,( ) ) ( , )f x x q f y y q f xy xy q f x yq xy q          

               
1 1 1 2( ,( ) ) ( , )xf xyq xy q f x y xy q    

Proof:     See Theorem (1.1) in [H1:p:643] 

Theorem 2.2. . For 0 1q  ,   and a, b, c, and d are nonzero complex numbers, then  

                      
1 10 ( , ( ) ) ( , ) ( , ( ) ) ( , )

b a c d
af ab ab q f q f cd cd q f q

a b d c

           

                              
1 1( , ( ) ) ( , ) ( , ( ) ) ( , )

c b a d
bf bc bc q f q f ad ad q f q

b c d a

           

                                
1 1( , ( ) ) ( , ) ( , ( ) ) ( , ).

a c b d
cf ac ac q f q f bd bd q f q

c a d b

           

Proof. See Theorem (3.5) in [C1, p. 545]. 

Theorem 2.3. If ab = cd, then 
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(i)         f(a, b)f(c, d) + f(−a, −b)f(−c, −d)=2f(ac, bd)f(ad, bc) 

And 

(ii)  f(a, b)f(c, d) − f(−a, −b)f(−c, −d)=2af(
b

c
 , 

c

b
abcd)f(

b

d
 , 

d

b
 abcd). 

Proof. See Entry 29 in [B1, p. 45]. 

Theorem 2.4. If 1q  then, 
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Proof.        Replacing q, x, and y by
5q , -q, and

2q  , respectively, in Theorem 2.1, we 

find that 

(2.1)   
4 2 3 3 7 4 6 9 2 8( , ) ( , ) ( , ) ( , ) ( , ) ( , ).f q q f q q f q q f q q qf q q f q q             

Replacing q, a, b, c, and d by
10q ,

3q  , 
2q  , 

5q  , and q, respectively, in Theorem 2.2, 

We find that 

(2.2) 

        
2 8 3 7 2 4 6( , ) ( , ) ( , )f q q f q q f q q       

          
9 4 6 2 5 5 9 2 8 2 3 7( , ) ( , ) ( , ) ( , ) ( , ) ( , )f q q f q q f q q qf q q f q q f q q              . 

Multiplying both sides of (2.1) by 
2 8( , )f q q  3 7( , )f q q  , and using (2.2), we find that 

(2.3) 

2 8 3 7( , ) ( , )f q q f q q    4 2 3( , ) ( , )f q q f q q   

 
9 4 6 2 5 5 9 2 8 2 3 7( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )f q q f q q f q q qf q q f q q f q q              . 

Now, dividing both sides of (2.3) by 

        

9 2 8 2 3 7 4 6 5 5 10 10 3( , ) ( , ) ( , ) ( , ) ( , ) / ( , ) ,f q q f q q f q q f q q f q q q q          
 

Using  (1.4), and replacing q by -q, we complete the proof of theorem. 

Theorem 2.5.  If 1q  then, 
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Proof.  Replac ing q, x, and y by
5q , q, and -

3q , respectively, in Theorem 2.1, we find that 

(2.4)     
4 2 3 4 6 3 7 9 2 8( , ) ( , ) ( , ) ( , ) ( , ) ( , ).f q q f q q f q q f q q qf q q f q q           

   

 

Replacing q, a, b, c, and d by 
10 4 5 3, , , ,q q q q q , respectively , in  Theorem 2.2  

 and dividing both sides of Theorem 2.2 by q, we find that 

(2.5) 

    
9 2 2 8 4 6( , ) ( , ) ( , )qf q q f q q f q q       

           
2 8 2 3 7 5 5 9 3 7 4 6 2( , ) ( , ) ( , ) ( , ) ( , ) ( , )f q q f q q f q q f q q f q q f q q              . 

Multiplying  both  sides of  (2.4 ) by  
9 4 6( , ) ( , )f q q f q q     , and using (2.5), we find that 

(2.6) 

   

9 4 6 4 2 3

9 3 7 4 6 2 2 8 2 3 7 5 5

( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

f q q f q q f q q f q q

f q q f q q f q q f q q f q q f q q

     

             
 

Now, dividing both sides of  (2.6)  by 

              

9 2 8 3 7 4 6 2 5 5 10 10 3( , ) ( , ) ( , ) ( , ) ( , ) / ( , ) ,f q q f q q f q q f q q f q q q q          

   
Using  (1.4) , and replacing q by -q, we complete the proof of theorem. 

Theorem 2.6  .  If 1q  then 

                          
15 35 25 25 3 5 45 25 25( , ) ( , ) ( , ) ( , )f q q f q q q f q q f q q      

                          

25 25 15 35 4 5 45 15 35( , ) ( , ) ( , ) ( , )f q q f q q q f q q f q q        

                            
3 25 25 5 45 4 15 35 5 45( , ) ( , ) ( , ) ( , )q f q q f q q q f q q f q q      

 (2.7)                    
4 16 8 122 ( , ) ( , ).f q q f q q      

Proof.   Let ab = cd = q50 in Theorem 2.3. Replacing a and c by 
15q and  

25q   

respectively, in Theorem 2.3 (i), we find that 

(2.8)   
15 35 25 25( , ) ( , )f q q f q q  25 25 15 35( , ) ( , )f q q f q q   40 60 22 ( , ) .f q q  

 
Replacing a and c by 

5q  and  
25q  , respectively, in Theorem 2.3 (ii), we find that 

5 45 25 25 25 25 5 45 5 20 80 2( , ) ( , ) ( , ) ( , ) 2 ( , ) .f q q f q q f q q f q q q f q q         

Replacing a and c by -
5q and 

15q respectively, in Theorem 2.3 (i), we find that 

(2.10) 

5 45 15 35 15 35 5 45 20 80 40 60( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) .f q q f q q f q q f q q f q q f q q           

Thus, by (2.8), (2.9), and (2.10), the left side of (2.7) equals 

40 60 2 8 20 80 2 4 20 80 40 602 ( , ) 2 ( , ) 2 ( , ) ( , )f q q q f q q q f q q f q q           . 

Now, in [B2, p. 191], we find that, for 1x  , 

               f(xA;,x/A)f(xB, x/B)= 
5 2 5 2 1 5 1 2 5 2( , ) ( , )f x A B x A B f x A B x A B   
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(2.11)                                                    

7 2 3 2 1 9 1 2 2

1 7 2 7 2 1 1 2 2

9 2 2 1 3 1 2 7 2

1 2 9 2 1 7 1 2 3 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

xBf x A B x A B f x A B x A B

xB f x A B x A B f x A B x A B

xAf x A B x A B f x A B x A B

xA f x A B x A B f x A B x A B

   

    

   

    









 

Multiplying both sides of (2.11) by 2, and replacing x, A, and B by 
10 6,q q and 2q

 

Respectively, in (2.11), we find that 

    

4 16 8 12

40 60 2 8 20 80 2 4 20 80 40 60

2 ( , ) ( , )

2 ( , ) 2 ( , ) 2 ( , ) ( , )

f q q f q q

f q q q f q q q f q q f q q

   

          
 

Thus, we have completed the proof of this theorem. 

We will prove six eta-function identities by using the properties of modular forms. 

Defnition of the Dedekind eta-function. 

                    Let H = {z : Im z > 0}. For z H ,
2 izq = e  and any positive integer n, define

 

inz

2 imnz 212 24 24

1

(2.12)   (nz) := n = e (1 e ) ( , ) ( , ).
n n

n n n n

m

q q q q f q q



 






      

Definition of the generalized Dedekind eta-function. 

                                          Let H = {z : Im z > 0}. For z H  

   , 
2 izq = e  and any positive integer n and m, define

             

     
2 2 ikz 2 ikz

, ,

1 1
(mod ) (mod )

 (z) :=  (1 e ) (1 e )

m
iP nz

n
n m n m

k k
k m n k m n

e


  
   
 
 

 
 

     

(2.13)                   
2

2 ( , )

( ; )

m n m n mP
n

n n

f q q
q

q q

  
 
 



 
 . 

In this paper, we only consider the cases with  m 0(mod )n  for ,n m
 

Definition of the modular group. The modular group is the set of linear fractional transformations  , ,
az b

T T z
cz d





 

where a, b, c, and d are rational integers such that ad – cd = 1. The modular group is denoted by T(1). Let 1( )T N , where 

N is a positive integer, be the set of linear factional transformations  ,
az b

U U z
cz d





 where a, b, c, and d are rational 

integers such that ad – bc = 1, c  0 (mod N), and a  d 1 (mod N). 

 Clearly 1( )T N  is a subgroup of T(1). 

Definition of a fundamental region. Let T be a subgroup of T(1). A fundamental region for T is an open subset R of H 

such that (a) for any two distinct points 1 2,z z  in R, there is no T T  such that   3T z z  for some T T . 

Definition of a standard fundamental region. Let T be a subgroup of T (1) with cosets 1 2, ,....,A A A  in the sense that 

T(1) 1 1.iU TA
  Then 
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1
1

.
i

R U A



  (a fundamental region for T(1)) 

is called a standard fundamental region for T. 

Definition of a cusp. Let R be a fundamental region of T. A parabolic cusp of T in R is any real point q, or q=  , such 

that q R


 , the closure of R in the topology of the Riemann sphere. 

Definition of a modular form of weight, r. Let r be a  real number. A function F(z), defined and meromorphic in H, is 

said to be a modular form of weight r with respect to, T, with multiplier system v, if 

(a)  F z  satisfied       
r

F Mz v M cz d F z   for any z H  and M T , 

(b) there exists a standard fundamental region R such that  F z  has at most finitely many poles in 
_

R H  and 

(c)  F z  is meromorphic at ,jq  for each cusp ,jq in 
_

R . 

The multiplier system  v v M  for the group T is a complex-valued function of absolute value 1 satisfying the 

equation. 

         1 2 3 3 1 2 1 2 1 2 2

r r r

z z zv M M c d v M v M c M d c d    

For 1 2,M M    T, where  

         3 31 1 2 2
1 2 3 1 2

1 1 2 2 3 3

,
z z z

a z ba z b a z b
M z M z and M z M M z

c d c d c d

 
   

  
 

Let {T, r,v} denote the space of modular forms of weight r and multiplier system v on T, where T is a subgroup of T(1) of 

finite index. 

Let or d (f;z) denote the invariant order of a modular form f at z. Let  ;TOrd f z  denote the order of f with respect to T, 

defined by    
1

; : ; ,TOrd f z ord f z
e

  where l  is the order of f  at z  as a fixed point of T. 

Theorem 2.7. The Dedekind eta-function  n z  is a modular form of weight ½ on the full modular group T(1). 

Proof.   See Theorem 10 in [KM, p.43]. 

Theorem 2.8. The multiplier system nv  of the modular from is given by the following formula : for each 

 1
a b

M T
c d

 
  
 

, 

 

   

     

     

2

2

2

1 3

24

1 3 1

24

1 3 1

24

, ,

, 0 0,

, , 0, 0,

bd c c a d c

ac d d b c d

n

ac d d b c d

d
if c is odd

c

c
v M if d is odd and either c or d

d

c
if d is odd c d

d







   

    

    

 
  
 

 

    
 


     
 

 

( )n z
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where 
24  is a primitive 24

th
 root of unity. 

Proof.   See Theorem 2 in [KM, p. 51]. 

Theorem 2.9 (The valence formula).  , , 0,If f T r v and f then   

 ;T

z R

Ord f z r


 , 

Where R is an fundamental region for T, and  
1

: 1 :
12

T T      

Proof.   See Theorem 4.1.4 in [RR]. 

 

Lemma 2.10. If 1 2 2..... nm m m  are positive integers, n is a positive integer, N is a positive even integer, and the least 

common multiple of 1 2 2..... nm m m  divides N, then for z H          1 2 2 1.... , ,nn m z n m z n m z T N n v  where 

 1 24,
a b

A T N
c d


 

  
 

 is a primitive 24
th

 root of unity, and 

       22
1 / / 3 1

24

1

/ i i i

n
ac d m d m b c m di

i

c m
v A

d


    



 
   

 
  

Proof.   See Lemma 2.2.4 in [C3]. 

Lemma 2.11. For a positive integer n,   2

1 2
/

1
(1) : 1 ,

p n

T T n n
p

 
     

 
  where the product is over all primes p 

dividing n. 

 

Proof.   See Lemma 2.6.5 in [C2]. 

 

Theorem 2.12. For ,z H  let    ,

,

/
0

: ,n mr

n m

n N
m n

f z n z

 

   where ,n m
r  are integers. 

If 2 ,

/
0

0n m

n N
m n

m
nP r

n
 

 
 

 
  (mod 2) and  2 ,

/
0

0 0n m

n N
m n

N
P r

n
 

  (mod 2), then     1 ,0f z T N I , where for 

   1 , 1
a b

M T N I M
c d

 
   
 

. 

Proof.   See Theorem 3 in [RS, p. 126]. 

Theorem 2.13. For z H , 

18 4

50 10,2 10,3 20,4 100,50n n n n n  

2

50,5 50,10 50,15 50,25 100,40 50,5 50,10 50,15 50,20 50,25 100,40

2 2 2

50,15 50,20 50,25 100,20 50,5 50,15 50,20 50,25 100,40

2 2 2 2

50,5 50,20 50,25 100,30 100,40 50,5 50,15 50,20 100,40 100,5

(

2

2

x n n n n n n n n n n n

n n n n n n n n n

n n n n n n n n n n

 

 

  0 )
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(2.14)                    =
2 16 2 4 2 2 9

10 100 10,1 10,2 20,8 50,10 50,15 50,20 50,25 100,50n n n n n n n n n n  

Proof.   For 1 < i < 7, let 
1

if  is the product of 18 eta-functions in each of the 7 products in (2.14), and 
1

ig  be the product 

of the generalized eta-functions in each of the 7 products in (2.14). Each 
1

if  is the product of 18 eta-functions, and by 

Theorem 2.10 and a straightforward calculation, each 
1

if  is a modular form of weight 9 on 
1(300)T  with the multiplier 

system 
1v  where for        22

1 / / 3 1

24

1

/ i i i

n
ac d m d m b c m di

i

c m
v A

d


    



 
    

 
 . By Theorem 2.12 and a straightforward 

calculation, each 
1

ig  is a modular form of weight 0 on 
1(300)T  with the multiplier system I. Therefore, each 

1 1

i if g  is a 

modular form of weight 9 on 
1(300)T  with multiplier 1v . By Theorem 2.11,  1(1) : 300 57600T T     Let 

1F  

denote the difference of the left and right sides of (2.14). Applying Theorem 2.9 (the valence formula), for a fundamental 

region R for 1(300)T , we deduce that, for 1F , 

(2.15) 
     

1 1 1300

9.57600
; 43200 ; ,

12
T

z R

Ord F z ord F


     

Since both sides of (2.14) are analytic on R. Using Mathematica, we calculated the Taylor series of 1F  is a constant, we 

have a contradiction to (2.15). We have thus completed the proof of Theorem 2.13. 

 

Theorem 2.14. For  z H  

18 16

50 10,1 10 ,2 20,6 20,8 100,50

2

50,5 50,10 50,15 50,20 50,25 100,50 50,5 50,15 50,20 50,25 100,20

2 2 2

50,5 50,10 50,25 100,20 50,5 50,10 50,15 50,25 100,20

2 2

50,10 50 15,25 100,10 100,20

(

2

2

n n n n n n

x n n n n n n n n n n n

n n n n n n n n n

n n n n n n

 

 

  2 2

50,5 50,10 50,15 100,20 100,50 )n n n n

 

(2.16)   = 
2 16 16 2 2 9

10 100 10,2 10,3 20,4 50,5 50,10 50,20 50,25 100,50n n n n n n n n n n  

Proof.   For 1 1 < i < 7, let
2

if  be the product of eta-functions in each of the 7 products in (2.16), and 
2

ig  be the product 

of the generated eta-functions in each of the 7 products in (2.16). Each 
2

if  is the product of 18 eta-functions, and by 

Theorem 2.10 and a straightforward calculation, each
2

if  is a modular form of weight 9 on 1(300)T  with the multiplier 

system 2v  where for 

   
   21

12 3 1
24

1 2 24300
c a ad d bd da b

A T v A
c d


     

   
 

. 

By Theorem 2.12 and a straight forward calculation, each 
2

ig  is a modular from of weight 0 on 1(300)T with the 

multiplier system I. Therefore, each 
2 2

i if g  is a modular form of weight 9 on 1(300)T  with multiplier system  2v . Let 

2F  denote the difference of the left and right sides of (2.16). Applying Theorem 2.9, for a fundamental region R for 

1(300)T , we deduce that, for 2F , 

(2.17)  
     

1 2 2300

9.57600
; 43200 ; ,

12
T

z R

Ord F z ord F
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Since both sides of (2.16) are analytic on R. Using Mathematica, we calculated the Taylor series of 
2F  about q=0 (or 

about the cusp z= ) and found that 
2F =0  43201

2 0F q . Unless 
2F  is a constant, we have a contradiction to (2.6). 

We have therefore completed the proof of Theorem 2.14. 

Theorem 2.15. For z H , 

(2.18) 

2 2 10 3

5 100 5 ,1 6,1n n n n  

3 3 2 2 2

50,5 50,10 100,40 100,50 50,15 50,20 100,20 100,50 50,10 50,20 100,25

2 2 10 3 2 2 2 2

20 25 5,1 6,1 25,5 25,5 50,10 50,20

( 3x n n n n n n n n n n n

n n n n n n n n

  


 

Proof.   For 1 4,i  let 
3

if  be the product of eta-functions in each of the 4 products in (2.18), and 
3

ig  be the product of 

the generalized eta-functions in each of the 4 products in (2.18). Each 
3

ig  is the product of 14 eta-functions, and by 

Theorem 2.10 and a straightforward calculation, each 
3

ig  is a modular form of weight 2 on 1(300)T  with the multiplier 

system 3v , where for  

   
   21

18 3 1
50

1 3 24300
c a ad d bd da b

A T v A
c d


     

   
 

. 

By Theorem 2.12 and a straightforward calculation, each 
3

ig  is a modular form of weight 0 on 1(300)T  with the 

multiplier system I. Therefore, each 
3 3

i if g  is a modular from of weight 2 on 1(300)T  with multiplier system  3v . Let 

3F  denote the difference of the left and rights sides of (2.18). Applying Theorem 2.9, for a fundamental region R for 

1(300)T , we deduce that, for 3F , 

(2.19)   
     

1 3 3300

2.57600
; 9600 ; ,

12
T

z R

Ord F z ord F


     

Since both sides of (2.18) are analytic on R. Using Mathematica, we calculated the Taylor series of 3F  about q = 0 ( or 

about the cusp z =  ) and found that  9601

3 0F q . Unless 3F  is a constant, we have a contradiction to (2.19). We 

have thus completed the proof of Theorem 2.15. 

Theorem 2.16. For z H , 

(2.20) 

2 2 2 3

4 50 10,1 10,2 10,3 20,2

50,5 50,15 50,25 100,50 50,5 50,15 50,25 100,30 50,5 50,15 50,25 100,10

2 2 2 2

50,5 50,15 100,50 50,5 50,25 100,30 50,5 50,25 100,30 50,15 50,25 100,10

2 2

10 20 10

(

2 )

n n n n n n

x n n n n n n n n n n n n

n n n n n n n n n n n n

n n n

 

   

 3 3 3 3

,1 10,2 20,4 20,8 50,5 50,10 50,25n n n n n n

 

Proof.   For 1 8,i  let 
4

if  be the product of eta-functions in each of the 8 products in (2.20), and 
4

ig  be the product of 

the generalized eta-functions in each of the 8 products in (2.20). Each 
4

if  is the product of 4 eta-functions, and by 
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Theorem 2.10 and a straightforward calculation, each 
4

if  is a modular form of weight 2 on 
1(300)T  with the multiplier 

system 
4v , where for  

   
   23

12 3 1
50

1 4 24300
c a ad d bd da b

A T v A
c d


     

   
 

. 

By Theorem 2.12 and a straightforward calculation, each 
4

ig  is a modular form of weight 0 on 1(300)T  with the 

multiplier system I. Therefore, each 
4 4

i if g  is a modular from of weight 2 on
1(300)T  with multiplier system  

4v . Let 

4F  denote the difference of the left and rights sides of (2.20). Applying Theorem 2.9, for a fundamental region R for 

1(300)T , we deduce that, for 4F , 

(2.21)   
     

1 4 4300

2.57600
; 9600 ; ,

12
T

z R

Ord F z ord F


     

Since both sides of (2.20) are analytic on R. Using Mathematica, we calculated the Taylor series of 4F  about q = 0 ( or 

about the cusp z =  ) and found that  9601

4 0F q . Unless 4F  is a constant, we have a contradiction to (2.21). We 

have thus completed the proof of Theorem 2.16. 

Theorem 2.17. For z H , 

(2.22) 

8 3 2

10 20 50,1 10,4 20,4 20,8 50,5 50,15 50,25 200,50 200,100

10,1 20,10 50,10 100,40 10,3 20,2 50,10 100,40

10,1 20,10 50,20 100,20 10,3 20,2 50,20 100,20

2

10,1 10,4 20,4 20,8 40,10 50,5 50

( 4

6 )

4

n n n n n n n n n n n

x n n n n n n n n

n n n n n n n n

n n n n n n n



 

 ,10 50,15 50,20 50,25 200,100

8 3 2 2 10 3

10 20 50 100 10,1 50,10 50,20 10 20 100 10,3 20,2 20,10

8 3

10 20 50 50,5 50,10 50,15 50,20 100,50 200,50 200,100

3 2

10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2

)

( 4

n n n n

n n n n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n

 



  2 3 2

20,5 20,8 10,3 20,2 20,4 20,10

8 3

10 20 50 50,5 50,10 50,20 50,25 100,30 200,50 200,100

3 2 2 3 2

10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 20,5 20,8 10,3 20,2 20,4 20,10

8 3

10 20 50 50,10 50,1

)

(2 2 3 )

n n n n n

n n n n n n n n n n

n n n n n n n n n n n n n n

n n n n n





  

 5 50,20 50,25 100,10 200,50 200,100

3 2 2 3 2

10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 20,5 20,8 10,3 20,2 20,4 20,10(3 2 2 )

n n n n n

n n n n n n n n n n n n n n  

 

Proof.   For 1 15,i  let 
5

if  be the product of eta-functions in each of the 15 products in (2.22), and 
5

ig  be the product 

of the generalized eta-functions in each of the 15 products in (2.22). Each 
5

if  is the product of 12 eta-functions, and by 

Theorem 2.10 and a straightforward calculation, each 
5

if  is a modular form of weight 6 on 1(200)T  with the multiplier 

system 5v , where for  

   
   21

22 3 1
100

1 5 24

10
200

c a ad d bd da b
A T v A

c d d


      
       
   

. 
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By Theorem 2.12 and a straightforward calculation, each 
5

ig  is a modular form of weight 0 on 
1(200)T  with the 

multiplier system I. Therefore, each 
5 5

i if g  is a modular from of weight 6 on 1(200)T  with multiplier system  5v . By 

Theorem 2.11,  1(1) : 200 28800T T     Let 5F  denote the difference of the left and rights sides of (2.22). Applying 

Theorem 2.9, for a fundamental region R for 1(200)T , we deduce that, for 5F , 

(2.23)   
     

1 5 5200

6.28800
; 14400 ; ,

12
T

z R

Ord F z ord F


     

Since both sides of (2.22) are analytic on R. Using Mathematica, we calculated the Taylor series of 
5F  about q = 0 ( or 

about the cusp z =  ) and found that  14401

5 0F q . Unless 
5F  is a constant, we have a contradiction to (2.23). We 

have thus completed the proof of Theorem 2.17. 

 

Theorem 2.18. For z H , 

(2.24) 

8 3 3 2 2

10 20 50 10,1 20,4 20,6 20,8 50,15 50,25 200,50 200,100

10,1 20,10 50,10 100,40 10,1 20,10 50,20 100,20 10,3 20,2 50,20 100,20

10 2 2 2 3

10 20 50 100 10,1 10,3 20,2 20,4 20,6 20,8 20,8 40,10

( 2 )

4

n n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n

  

 50,5 50,10 50,15 50,20

2

100,25 200,100

8 3 3

10 20 50 50,10 50,20 200,50 200,100

3 2 3 2

10,1 20,6 20,8 20,10 50,5 50,15 100,50 10,3 20,2 20,4 20,10 50,5 50,15 50,100

3 2

10,3 20,2 20,4 20,10 50,5 50,25

(

n n n n

n n

n n n n n n n

n n n n n n n n n n n n n n

n n n n n n





 

 3 2

100,30 10,1 20,6 20,8 20,10 50,15 50,25 100,10

10,1 10,3 20,2 20,5 20,6 20,8 50,15 50,25 100,102 )

n n n n n n n n

n n n n n n n n n





 

Proof.   For 1 10,i  let 
6

if  be the product of eta-functions in each of the 10 products in (2.24), and 
6

ig  be the product 

of the generalized eta-functions in each of the 10 products in (2.24). Each 
6

if  is the product of 14 eta-functions, and by 

Theorem 2.10 and a straightforward calculation, each 
6

if  is a modular form of weight 7 on 1(200)T  with the multiplier 

system 6v , where for  

   
   21

2 3 1
20

1 6 24

10
200

c a ad d bd da b
A T v A

c d d


      
       
   

. 

By Theorem 2.12 and a straightforward calculation, each 
6

ig  is a modular form of weight 0 on 1(200)T  with the 

multiplier system I. Therefore, each 
6 6

i if g  is a modular from of weight 7 on 1(200)T  with multiplier system  6v . Let 

6F  denote the difference of the left and rights sides of (2.24). Applying Theorem 2.9, for a fundamental region R for 

1(200)T , we deduce that, for 5F , 

(2.25)   
     

1 6 6200

7.28800
; 16800 ; ,

12
T

z R

Ord F z ord F
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Since both sides of (2.24) are analytic on R. Using Mathematica, we calculated the Taylor series of 
6F  about q = 0 ( or 

about the cusp z =  ) and found that  16801

6 0F q . Unless 
6F  is a constant, we have a contradiction to (2.25). We 

have thus completed the proof of Theorem 2.18. 

We have proved six eta-function identities with the properties of modular forms. In the next step, we will derive six theta 

function identities from the eta-function identities above. 

Theorem 2.19. For 1,q   

(2.26) 

     

 
    

 
 

        

      
   

5 45 40 60 50 50

6 10 40 4 20 30

2
20 30

50 50

3 15 35 20 80 2 5 45 40 60

10 40

2
5 45 40 60 50 50 100 100

2

15 35 10 90 20

, , ,
, ,

,

,
, , 2 , ,

,

, , ; ;
2

, ,

q q f q q f q q
q f q q q f q q

f q q

f q q
q f q q f q q q f q q f q q

f q q

f q q f q q q q q q
q

f q q f q q f q

     
     

 

 
         

 

      


    



 

    
       

      
     

80

2 3
5 45 40 60 50 50

25 25 10 90 20 80 30 70

2
9 8 12 10 10 20 20

3 7 2 18 4 16

,

, , ;

, , , ,

, , ; ;

, , ,

q

f q q f q q q q

f q q f q q f q q f q q

f q q f q q q q q q

f q q f q q f q q



    


       

       


     

 

Proof.   By applying 
2 2

100,50 100 50n n n  to the right side of (2.14), dividing both sides of (2.14) by 

451
18 4 2 230
50 10,2 10,3 20,2 20,4 50,10 50,15 50,20 50,25 100/q n n n n n n n n n n  and applying (2.12) and (2.13) , we derive (2.26) from (2.14) 

Theorem 2.20. For 1,q   

(2.27) 

     

 
    

 
 

        

      
   

15 35 20 80 50 50

2 10 40 4 20 30

2
40 40

50 50

3 5 45 40 60 4 15 35 20 80

20 30

2
15 35 20 80 50 50 100 100

5

5 45 30 70 4

, , ,
, ,

,

,
, , 2 , ,

,

, , ; ;
2

, ,

q q f q q f q q
q f q q q f q q

f q q

f q q
q f q q f q q q f q q f q q

f q q

f q q f q q q q q q
q

f q q f q q f q

     
     

 

 
         

 

      


    



 

    
       

      
     

0 60

2 3
15 35 20 80 50 50

25 25 10 90 30 70 40 60

2
3 7 4 16 10 10 20 20

9 6 14 8 12

,

, , ;

, , , ,

, , ; ;

, , ,

q

f q q f q q q q
q

f q q f q q f q q f q q

f q q f q q q q q q

f q q f q q f q q
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Proof. By applying 
2 2

100,50 100 100n n n  to the right side of (2.16), dividing both sides of (2.16) by 

589
18 16 2 230
50 10,1 10,2 20,6 20,8 50,5 50,10 50,20 50,25 100/q n n n n n n n n n n  and applying (2.12) and (2.13) , we derive (2.27) from (2.16) 

Theorem 2.21. For IF 1,q   

(2.28) 

       

 

       

 

 

5 45 10 40 40 60 50 50

5

2
20 30

15 35 20 30 20 80 50 50

2
10 40

2
5 15

, , , ,

,

, , , ,

,

,

f q q f q q f q q f q q
q

q q

f q q f q q f q q f q q

f q q

q q

       

 

       


 

  

 

Proof.   By applying 25,5 25,10 25 5n n n n  to the right side of (2.18), in Theorem 2.15, dividing both sides of (2.18) by 

25
2 10 3 2 24
5 5,1 6,1 50,10 50,20q n n n n n  and applying (2.12) and (2.13) , we derive (2.28) from (2.18) 

Theorem 2.23. For IF 1,q   

(2.29) 

           

       

       

    
   

25 25 25 25 2 15 35 15 35 8 5 45 5 45

4 25 25 5 45 15 35 25 25

5 15 35 5 45 5 5 45 15 35

9 4 4 10 10

3 7 2 18

, , , , , ,

, , , ,

2 , , , ,

, , ;

, ,

f q q f q q q f q q f q q q f q q f q q

q f q q f q q f q q f q q

q f q q f q q q f q q f q q

f q q q q q q

f q q f q q

       

     

     

  


   

 

Proof.   We can easily derive that for any integers n, 

(2.30)  

   
   

 
2

50 50 2 100 2

50

100 100 50

, ,
,

, ,

n n

n n

n n

q q f q q
f q q

q q f q q







  


  
 

Now, applying 20 20,4 20 8 4n n n n n  to the right side of (2.20), dividing both sides of (2.20) by 

329
2 2 330
4 10,1 10,2 10,3 20,2 50,5 50,15 50,25q n n n n n n n n  and applying (2.12) and (2.13) , and (2.30) with n replaced by 5, 15 and 25, 

repeatedly, we complete the Proof.   

Theorem 2.23.  IF 1,q   

(2.31) 
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2
9 4 4 10 10

20 20 4 4 16 8 12

3 7 2 18

2
9 4 4 10 10

2 10 40 4 16 8 12

3 7 2 18

2
9 4 4 10 10

6 50 150

3 7

, , ;
, 4 , ,

, ,

, , ;
, 6 , ,

, ,

, , ;
4 ,

,

f q q q q q q
f q q q f q q f q q

f q q f q q

f q q q q q q
q f q q q f q q f q q

f q q f q q

f q q q q q q
q f q q

f q q f

    
     
    
 

    
      
    
 

   


   
   

 
      

     

 
      

     

4 16 8 12

2 18

2
9 8 12 10 10 20 20

25 25

3 7 2 18 4 16

2
3 7 4 16 10 10 20 20

2
5 15

9 6 14 8 12
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, ,
,

, , , ;
,

, , ,

, , ; ;
4 ,

, , ,

,

qf q q f q q
q q

f q q f q q q q q q
f q q

f q q f q q f q q

f q q f q q q q q q
qf q q q

f q q f q q f q q

qf q

 
     
  
 

     
 
      
 

      
    
      
 

  
      

     

 
      

     

 
      

2
9 8 12 10 10 20 20

35

3 7 2 18 4 16

2
3 7 4 16 10 10 20 20

2
5 15

9 6 14 8 12

2
9 8 12 10 10 20 20

4 25 25

, , , ;
2

, , ,

, , ; ;
2 , 3

, , ,

, , , ;
, 3

f q q f q q q q q q
q

f q q f q q f q q

f q q f q q q q q q
qf q q q

f q q f q q f q q

f q q f q q q q q q
q f q q

f q

     
 
      
 

      
    
      
 

    


     

 
      

     

3 7 2 18 4 16

2
3 7 4 16 10 10 20 20

2
5 15

9 6 14 8 12

, , ,

, , ; ;
2 , 2

, , ,

q f q q f q q

f q q f q q q q q q
qf q q q

f q q f q q f q q

 
 
     
 

      
   
      
 

 

Proof.    applying 
2 2

20 20 10 10, 20 20,4 20,8 4n n n n n n n n   and 50 50,10 50,20 10n n n n   to (2.22), dividing both sides of (2.22) 

by 

233
86
10 20 10,1 10,3 20,2 20,4 20,6 20,8 50,5 50,10 50,15 50,20 50,25 200,50 200,100q n n n n n n n n n n n n n n n  and applying (2.12) and (2.13) , and 

(2.30) with n replaced by 5, 10, 15, 20 and 25, repeatedly, and with q and n replaced by 
4q  and 

50q , respectively, we 

derive (2.32) from (2.20) 

Theorem 2.24 

(2.32) 
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    (      ) (
 (      )  (        )(       ) (       ) 

 (       ) (        ) (        )
    (        ) )  

Proof. Applying 

    
           

 ,                                   and                to (2.24),  

Dividing both sides of (2.24) by  
   

    
       

                                                                            , 

and applying (2.12), (2.13), and (2.30) with n replaced by 5, 10, 15, 20 and 25, repeatedly, and with q and n replaced by q
4
 

and q
50

, respectively, we derive (2.32) from (2.24). 

3.      PROOF OF RAMANUJAN’S SEVENTH IDENTITY 

In this section we will prove Ramanujan’s seventh identity, (1.1). 

Theorem 3.1 (Ramanujan’s seventh tenth order mock theta function identity). 

∫
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Proof. Replacing  , x, t, and θ by 5in, –5n, 
 

√ 
  , and θ’ – i, respectively, in the left side of (1.14), we find that 

(3.1) ∫
           

             
       

√ 
∫
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Replacing    by 
 

 
 in (3.1), and using (1.14), we have 

(3.2) ∫
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, 

and Replacing    by 
 

 
 in (3.1), and using (1.14), we have  

(3.3)  ∫
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Using (3.2) and (3.3), we can easily derive that 
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(3.4) Let       . Then, using (1.15), (1.16), (1.3), (1.10) with q and z replaced by – q and q
4
, respectively, (1.8), 

(1.11) with q, z, and x replaced by –q
5
, 1 and q

2
, respectively, (1.13) with q replaced by – q, and Theorem 2.4, we can 

derive that 
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(3.5)   √  √ 
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 (       ) (    )
 

 We now need to use the following transformation formula for     in [ML, p. 330]: 

(3.6)       (
 

 
  

 

 
)    √             (   )  

 Replacing   and   by     and    , respectively, in (3.6), we find that 
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and replacing   and   by     and    , respectively, in (3.6), we find that 
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  and    
   

        Then, using (3.7), (3.8), (1.15), and (1.16), we find that 
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By (1.3), we easily reformulate the denominator of the right hand side of (3.9): 

(3.10) 
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Now, multiplying by     
       

       
       

     both the numerator and the denominator of the numerator of 

the right side of (3.9), we find that the numerator of the right side of (3.9) equals 
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    *   (  
           

           
           

        )    
         +. 

We will transform some of the generalized Lambert series in (3.11) into L1 and L2, and we need the following 

hypergeometric series from [GR, p. 128] to handle the other generalized Lambert series in (3.11): 

∑
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(     ) (          ) 
, 
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Replacing q, a, b, and c by    
      

  √  
   and  √  

  , respectively, in (3.12), letting d and e tend to , and using (1.3), 

(1.5), and (2.30) with n replaced by 5, we find that 
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Replacing q, a, b, and c by    
      

   √  
    and  √  

   , respectively, in (3.12), letting d and e tend to , and using 

(1.3), (1.5), and (2.30) with n replaced by 15, we find that 
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With Entry 8(vii) in [B1, p. 114], we find that 
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Using (1.9), (1.10), (3.11), (3.13), (3.14), and (3.15), we find that 
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To proceed to the next step, we need the following result, which can be proved by a the simple calculation: 
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(3.17) 
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Transforming    and    in the right side of (3.16) into the sums of ψ (q) and theta functions, and ϕ (q) and theta functions, 

respectively, with (1.7) and (1.8), using (3.10) and (3.17) to simplify the terms related to ϕ (q) and ψ (q), using (1.11), 

(1.12), and (1.13), replacing q by   in Theorem 2.19, Theorem 2.20, and Theorem 2.21, and applying Theorem 2.19, 

Theorem 2.20, and Theorem 2.21, we find that the right side of (3.16) equals 
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Therefore, by (3.9), (3.16), and (3.18), we derive 
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To complete the proof of Theorem 3.1, we need the following identities. Using (1.3), we can derive that 
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Recall that        and      
 

  . By (1.3), (1.16), and (3.6), we are able to derive the following four identities: 
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By (3.22), we find that 

(3.23) 

 (      ) (     ) (     )

 (    )
 

 

  
  

 

   
 
  

 
 
  

   

   
  ∑ (  )   

     
  

  
   ∑ (  )   

  
 
  

   
   ∑ (  )   

  
 
  

   
  

∑ (  )   
  

 
  

  
   

 

Recall that          and       By (3.20), (3.21), Theorem 2.22 with q replaced by     and Theorem 2.6 with q 

replaced by   , the numerator of the right side of (3.23) equals 
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Here, we easily calculate that      
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side of (2.31) with q replaced by q1,     
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  the left side of (2.32) with q replaced by q1,      

 

 
  the right side of 

(2.31) with q replaced by q1, and     
√ 

 
  the right side of (2.32) with q replaced by q1. Then, we easily verify that the 

right side of (3.24) equals the sum of LS1 and LS2. Therefore, we can say that the right side of (3.24) equals the sum of 

RS1 and RS2. Using (3.21), we can find that the sum of RS1 and RS2 equals 
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By (3.7), (1.3), and (1.16), we find that 
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By (3.23), (3.24), (3.25), and (3.26), we find that 
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In conclusion, using (3.4), (3.5), (3.19), and (3.27), we see that we have completed the proof of Ramanujan's seventh 

identity. 

4.      PROOF OF RAMANUJAN'S EIGHTH IDENTITY 

In this section, we will prove the Ramanujan's eighth identity (1.2). The proof of eighth identity is similar to that of 

seventh identity. 

Theorem 4.1 (Ramanujan's eighth tenth order mock theta function identity). 
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Proof. Replacing    by 
 

 
 in (3.1), and using (1.14), we find that 
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(4.1) ∫
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Similarly, replacing    by 
 

 
 in (3.1), and using (1.14), we find that 
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Using (4.1) and (4.2), we find that 
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(3.4) Let       . Then, using (1.15), (1.16), (1.3), (1.9) with q and z replaced by – q and q
2
, respectively, (1.7), 

(1.11) with q, z, and x replaced by –q
5
, 1 and – q, respectively, (1.12) with q replaced by – q, and Theorem 2.5, we can 

derive that 
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Replacing   and   by    and    , respectively, in (3.6), we find that 
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         Then, using (4.5), (4.6), (1.15), and (1.16), we find that 
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If we replace   by    in the right side of (3.9), we can find that the right side of (3.9) equals the right side of (4.7). And, 

it's easy to verify that (3.10), (3.11), and (3.16) are correct if we replace   by    in (3.10), (3.11), and (3.16). Therefore, 

we find that 
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we also need the following results, which can be obtained by an easy calculation: 
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Transforming    and    into the sums of ψ (q) and theta functions, and ϕ (q) and theta functions with (1.7) and (1.8), 

using (4.8) and (4.10) to simplify the terms related to ϕ (q) and ψ (q), replacing q by   in Theorem 2.19, Theorem 2.20, 

and Theorem 2.21, and applying Theorem 2.19, Theorem 2.20, and Theorem 2.21, we find that (4.9) equals 
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By (4.7), (4.9), and (4.11), we find that 
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By (1.3), (1.16), and (3.6), we derive the next two identities: 
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Using (3.22) and (4.13), we find that 
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Recall that          and         By (3.20), (3.21), Theorem 2.22 with q replaced by     and Theorem 2.6 with q 

replaced by   , the numerator of the right side of (4.14) equals 
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Here, we easily calculate that         
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By (4.5), (1.3), and (1.16), we find that 
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(4.18)             (   
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In conclusion, using (4.3), (4.4), (4.12), and (4.18), we have completed the proof of Ramanujan's eighth identity. 
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